Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Sintering behavior analysis of compacted dry recycled U$$_{0.7}$$Pu$$_{0.3}$$O$$_{2}$$ powder using master sintering curve theory

Nakamichi, Shinya; Sunaoshi, Takeo*; Hirooka, Shun; Vauchy, R.; Murakami, Tatsutoshi

Journal of Nuclear Materials, 595, p.155072_1 - 155072_11, 2024/07

JAEA Reports

Experimental study on prevention of high cycle thermal fatigue at the core outlet of advanced sodium-cooled fast reactor; Characteristics of temperature fluctuations and countermeasures to mitigate temperature fluctuations at a bottom of upper internal structure

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Nagasawa, Kazuyoshi*; Kurihara, Akikazu; Tanaka, Masaaki

JAEA-Research 2022-009, 125 Pages, 2023/01

JAEA-Research-2022-009.pdf:29.22MB

The design studies of an advanced loop-type sodium-cooled fast reactor (Advanced- SFR) have been carried out by the Japan Atomic Energy Agency (JAEA). At the core outlet, temperature fluctuations occur due to mixing of hot sodium from the fuel assembly with cold sodium from the control rod channels and radial blanket assembly. These temperature fluctuations may cause high cycle thermal fatigue around a bottom of Upper Internal Structure (UIS) located above the core. Therefore, we conducted a water experiment using a 1/3 scale 60 degree sector model that simulated the upper plenum of the advanced loop-type sodium-cooled reactor. And we proposed some countermeasures against large temperature fluctuations that occur at the bottom of the UIS. In this report, we have summarized that the effect of the countermeasure structure to mitigate the temperature fluctuation generated at the bottom of UIS is confirmed, and the Reynolds number dependency of the countermeasure structure and the characteristics of the temperature fluctuation on the control rod surface.

Journal Articles

Water experiments on thermal striping phenomena at the core outlet of an advanced sodium-cooled fast reactor, 1; Proposal of countermeasures to mitigate temperature fluctuations around control rods

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki

Hozengaku, 20(3), p.89 - 96, 2021/10

Hot sodium from the fuel assembly can mix with cold sodium from the control rod (CR) channel and the blanket assemblies at the bottom plate of the Upper Internal Structure (UIS) of Advanced-SFR. Temperature fluctuation due to mixing of the fluids at different temperature between the core outlet and cold channel may cause high cycle thermal fatigue on the structure around the bottom of UIS. A water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of UIS. We focused on the temperature fluctuations near the primary and backup control rod channels, and studied the countermeasure structure to mitigate the temperature fluctuation through temperature distribution and flow velocity distribution measurements. As a result, effectiveness of the countermeasure to mitigate the temperature fluctuation intensity was confirmed.

Journal Articles

Water experiments on thermal striping phenomena at the core outlet of an advanced sodium-cooled fast reactor, 2; Proposal of countermeasures to mitigate temperature fluctuations around radial blanket fuel assemblies

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki

Hozengaku, 20(3), p.97 - 101, 2021/10

Focusing on the thermal striping phenomena that occurs at a bottom of the internal structure of an advanced sodium-cooled fast reactor (Advanced-SFR) that has been designed by the Japan Atomic Energy Agency, a water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of Upper Internal Structure (UIS). In the previous paper, we reported the effect of measures to mitigate temperature fluctuations around the control rod channels. In this paper, the same test section was used, and a water experiment was conducted to obtain the characteristics of temperature fluctuations around the radial blanket fuel assembly. And the shape of the Core Instrumentation Support Plate (CIP) was modified, and it was confirmed that it was highly effective in alleviating temperature fluctuations around the radial blanket fuel assembly.

Journal Articles

Now is the time of fast reactor

Negishi, Hitoshi; Kamide, Hideki; Maeda, Seiichiro; Nakamura, Hirofumi; Abe, Tomoyuki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(8), p.438 - 441, 2020/08

Prototype Fast Breeder Reactor, Monju, was under decommission since April, 2018. It is the first time for Japan to make a sodium cooled reactor into decommission. It is significant work and will take 30 years. The Monju has provided wide spectrum and huge amount of findings and knowledge, e.g., design, R&D, manufacturing, construction, and operation up to 40% of full power over 50 years of development history. It is significant to utilize such findings and knowledge for the development and commercialization of a fast rector in Japan.

Journal Articles

Characterization of the insoluble sludge from the dissolution of irradiated fast breeder reactor fuel

Aihara, Haruka; Arai, Yoichi; Shibata, Atsuhiro; Nomura, Kazunori; Takeuchi, Masayuki

Procedia Chemistry, 21, p.279 - 284, 2016/12

BB2015-3214.pdf:0.31MB

 Times Cited Count:5 Percentile:94.32(Chemistry, Inorganic & Nuclear)

JAEA Reports

Report on the 8th Workshop on the Innovative Water Reactor for Flexible Fuel Cycle; February 10, 2005, Koku-kaikan, Minato-ku, Tokyo

Kobayashi, Noboru; Okubo, Tsutomu; Uchikawa, Sadao

JAERI-Review 2005-029, 119 Pages, 2005/09

JAERI-Review-2005-029.pdf:11.01MB

The research on Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed in JAERI for the development of future innovative reactors. The workshop on the FLWRs has been held every year since 1998 aiming at information exchange between JAERI and other organizations. The 8th workshop was held on Feb. 10, 2005 under the joint auspices of JAERI and North Kanto and Kanto-Koetsu branches of Atomic Energy Society of Japan with 75 participants. The workshop began with 3 presentations on FLWRs entitled "Framework and Status of Research and Development on FLWRs", "Long-Term Fuel Cycle Scenarios for Advanced Utilization of Plutonium from LWRs", and "Experiments on Characteristics on Hydrodynamics in Tight-Lattice Core". Then 3 lectures followed: "Development of Evaluation Method for Accuracy in Predicting Neutronics Characteristics of Tight-Lattice Core" by Osaka University, "Development of Cost-Reduced Low-Moderation Spectrum Boiling Water Reactor" by Toshiba Corporation and "Design and Analysis on Super-Critical Water Cooled Power Reactors" by Tokyo University.

JAEA Reports

Fuel elements and fuel cycle concepts of actinide burner reactors; Conceptual study of actinide burner reacotors, IV

Ogawa, Toru; Mukaiyama, Takehiko; Takano, Hideki; Takizuka, Takakazu; ; *

JAERI-M 89-123, 38 Pages, 1989/09

JAERI-M-89-123.pdf:1.25MB

no abstracts in English

Oral presentation

Fast reactor fuel cycle development in Japan toward sustainable energy supply

Hayafune, Hiroki

no journal, , 

no abstracts in English

Oral presentation

Current status of fast reactor developments in Japan

Kamide, Hideki

no journal, , 

Current status of energy policy of Japan and progress of International cooperation and researches on Fast Reactor Cycle development in JAEA are reported at FR22 plenary session.

Oral presentation

Fast reactor fuel cycle development in Japan; Toward sustainable energy supply

Kamide, Hideki

no journal, , 

Developments of fast reactor fuel cycle technology in Japan are shown, especially about Minor-Actinides and Plutonium use for sustainable energy supply.

11 (Records 1-11 displayed on this page)
  • 1